Tumblelog by Soup.io
Newer posts are loading.
You are at the newest post.
Click here to check if anything new just came in.

July 03 2015

10:35

Polymer mold makes perfect silicon nanostructures

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into everything from car parts to toys.
09:32

Scientists use nanoparticles to shut down mechanism that drives cancer growth

When scientists develop cancer therapies, they target the features that make the disease deadly: tumor growth, metastasis, recurrence and drug resistance. In epithelial cancers—cancers of the breast, ovaries, prostate, skin and bladder, which begin in the organs' lining—these processes are controlled by a genetic program called epithelial–mesenchymal transition.

July 02 2015

12:11

Better memory with faster lasers

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. Using ultrafast laser pulses that speed up the data recording process, Caltech researchers adopted a novel technique, ultrafast electron crystallography (UEC), to visualize directly in four dimensions the changing atomic configurations of the materials undergoing the phase changes. In doing so, they discovered a previously unknown intermediate atomic state—one that may represent an unavoidable limit to data recording speeds.
11:56

New technology using silver may hold key to electronics advances

Engineers at Oregon State University have invented a way to fabricate silver, a highly conductive metal, for printed electronics that are produced at room temperature.
07:09

Quantum-dot spectrometer is small enough to function within a smartphone

Instruments that measure the properties of light, known as spectrometers, are widely used in physical, chemical, and biological research. These devices are usually too large to be portable, but MIT scientists have now shown they can create spectrometers small enough to fit inside a smartphone camera, using tiny semiconductor nanoparticles called quantum dots.

July 01 2015

15:48

NIST 'how-to' website documents procedures for nano-EHS research and testing

As engineered nanomaterials increasingly find their way into commercial products, researchers who study the potential environmental or health impacts of those materials face a growing challenge to accurately measure and characterize them. These challenges affect measurements of basic chemical and physical properties as well as toxicology assessments.
13:30

New micro-supercapacitor structure inspired by the intricate design of leaves

There was a time during the early development of portable electronics when the biggest hurdle to overcome was making the device small enough to be considered portable. After the invention of the microprocessor in the early 1970s, miniature, portable electronics have become commonplace and ever since the next challenge has been finding an equally small and reliable power source. Chemical batteries store a lot of energy but require a long period of time for that energy to charge and discharge plus have a limited lifespan. Capacitors charge quickly but cannot store enough charge to work for long enough to be practical. One possible solution is something called a solid-state micro-supercapacitor (MSC). Supercapacitors are armed with the power of a battery and can also sustain that power for a prolonged period time. Researchers have attempted to create MSCs in the past using various hybrids of metals and polymers but none were suitable for practical use. In more recent trials using graphene and carbon nanotubes to make MSCs, the results were similarly lackluster.
09:59

Calculations confirm that surface flaws are behind fluorescence intermittency in silicon nanocrystals

Quantum dots are nanoparticles of semiconductor that can be tuned to glow in a rainbow of colors. Since their discovery in the 1980s, these remarkable nanoparticles have held out tantalizing prospects for all kinds of new technologies, ranging from paint-on lighting materials and solar cells to quantum computer chips, biological markers, and even lasers and communications technologies.

June 30 2015

15:17

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells

Nanoparticles packed with a clinically used chemotherapy drug and coated with an oligosaccharide derived from the carapace of crustaceans might effectively target and kill cancer stem-like cells, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James).
15:00

Researchers develop new biodegradable silicon transistor based on a material derived from wood

Portable electronics users tend to upgrade their devices frequently as new technologies offering more functionality and more convenience become available. A report published by the U.S. Environmental Protection Agency in 2012 showed that about 152 million mobile devices are discarded every year, of which only 10 percent is recycled—a legacy of waste that consumes a tremendous amount of natural resources and produces a lot of trash made from expensive and non-biodegradable materials like highly purified silicon.

June 11 2015

09:46

Researchers use nanotubes to better understand diseases

Researchers in UC's Department of Cancer Biology are collaborating with material scientists from the University of Houston to create and use nanotubes to capture and understand the regulation of proteins involved in a variety of diseases including certain cancers, cardiovascular diseases and obesity.

June 10 2015

16:05

Nanoparticles target and kill cancer stem cells that drive tumor growth

Many cancer patients survive treatment only to have a recurrence within a few years. Recurrences and tumor spreading are likely due to cancer stem cells that can be tough to kill with conventional cancer drugs. But now researchers have designed nanoparticles that specifically target these hardy cells to deliver a drug. The nanoparticle treatment, reported in the journal ACS Nano, worked far better than the drug alone in mice.
14:05

Strong teeth: Nanostructures under stress make teeth crack resistant

Human teeth have to serve for a lifetime, despite being subjected to huge forces. But the high failure resistance of dentin in teeth is not fully understood. An interdisciplinary team led by scientists of Charite Universitaetsmedizin Berlin has now analyzed the complex structure of dentin. At the synchrotron sources BESSY II at HZB, Berlin, Germany, and the European Synchrotron Radiation Facility ESRF, Grenoble, France, they could reveal that the mineral particles are precompressed.
14:02

Bacterial protein serves as sensor

A German-French team led by Prof. Dr. Jan C. Behrends and Dr. Gerhard Baaken from the University of Freiburg and Dr. Abdelghani Oukhaled from the Universities of Evry and Cergy-Pontoise has developed a method capable of precisely measuring the size of individual molecules. To do so, the researchers used the protein aerolysin from the bacterium Aeromonas hydrophila instead of the protein previously used for this purpose, alpha-hemolysin from the bacterium Staphylococcus aureus. The method remains unchanged: The protein forms a pore in an artificial cell membrane. The researchers insert the molecule whose size they wish to measure into this pore by guiding an ionic current through it. The molecule partially blocks this current - similar to the way an object illuminated by a spotlight throws a shadow. The rest of the ionic current, which makes it through the pore, can then be used to measure the molecule. "The new pore is much more suitable for determining the entire size range of molecules," says Behrends.
13:45

Researchers make ultrasensitive conductivity measurements

Researchers at Rice University have discovered a new way to make ultrasensitive conductivity measurements at optical frequencies on high-speed nanoscale electronic components.
12:40

New boron compounds for organic light-emitting diodes

Major advances in the field of organic electronics are currently revolutionising previously silicon-dominated semiconductor technology. Customised organic molecules enable the production of lightweight, mechanically flexible electronic components that are perfectly adapted to individual applications. Chemists at the Goethe University have now developed a new class of organic luminescent materials through the targeted introduction of boron atoms into the molecular structures. The compounds described in the professional journal Angewandte Chemie feature an intensive blue fluorescence and are therefore of interest for use in organic light-emitting diodes (LED's).
12:30

Stretchy sensors can detect deadly gases and UV radiation

RMIT University researchers have created wearable sensor patches that detect harmful UV radiation and dangerous, toxic gases such as hydrogen and nitrogen dioxide.
12:00

How structural flaws dictate failure strength and deformation in nanosized alloys with super-resilient properties

A study from A*STAR reveals that designers of metallic-glass-based nanodevices must account for tiny flaws in alloy frameworks to avoid unpredictable catastrophic failure. Understanding how nanoscale metallic glass fractures and fails when subjected to external stress is critical to improving its reliability in devices and composites.
09:29

Physicists develop ultrasensitive nanomechanical biosensor

Two young researchers working at the MIPT Laboratory of Nanooptics and Plasmonics, Dmitry Fedyanin and Yury Stebunov, have developed an ultracompact, highly sensitive nanomechanical sensor for analyzing the chemical composition of substances and detecting biological objects, such as viral disease markers, which appear when the immune system responds to incurable or hard-to-cure diseases, including HIV, hepatitis, herpes, and many others. The sensor will enable doctors to identify tumor markers, whose presence in the body signals the emergence and growth of cancerous tumors.

June 09 2015

20:58

'Nano-raspberries' could bear fruit in fuel cells

Researchers at the National Institute of Standards and Technology have developed a fast, simple process for making platinum 'nano-raspberries'—microscopic clusters of nanoscale particles of the precious metal. The berry-like shape is significant because it has a high surface area, which is helpful in the design of catalysts. Even better news for industrial chemists: the researchers figured out when and why the berry clusters clump into larger bunches of 'nano-grapes.'
Older posts are this way If this message doesn't go away, click anywhere on the page to continue loading posts.
Could not load more posts
Maybe Soup is currently being updated? I'll try again automatically in a few seconds...
Just a second, loading more posts...
You've reached the end.

Don't be the product, buy the product!

Schweinderl